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CONSTRUCTIVE FUNCTION THEORETIC METHODS FOR

HIGHER ORDER PSEUDOPARABOLIC EQUATIONS‘

R.P. Gilbert and G.C. Hsiao

0. INTRODUCTION

In this work we will develop a constructive method for solving
I pseudoparabolic equaticns of order 2n in the plane. More Brecisely,

we investigate equations of the form

:_ (0.1) &lu) := Mlu ) + Llu] ,
5 where M and L are the respective elliptic operators
o A th n-k
(0.2) M{u] := a"u + § M, (8 u) ;
k=1
p+qsk ; q
: M (o] := ? abd(x,y) S -,
; p,g=o axPay9
: and
] S Y m-k
({01=3) Llu] := a"u + X Ek(A ) m<n
b k=1
P
4 ptgg ptq,
L lv] o= ? pPY(x,y)
p,q=o axPayd

The coefficients of gk v Ek are taken, furthermore, to be analytic
functions of x and y for (x,y¥) €D C_Cl.
Recently, the integral operator methods of BLERGMAN [ 2 ] and
VEKUA [22], which have been very successful for developing repre- :
sentations for solutions of elliptic eguations in the plane, have
been extended by COLTON to treat the cases of parabolic [ 9 ] and

second order pseudoparabolic equations [10], [(11] in the plane.

BROWN, GILBERT and HSIAO [ 8 ] and BROWN and GILBERT [ 7 ] developed

analogous techniques for fourth-order pseudoparabolic equations using

This research was supported in part by the U.S. Air Force
Office of Scientific Research through AF-AFOSR Grant No. 76-2879,
and in part by the Alexander von Humboldt Foundation.
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respectively the methods of VEKUA and BERGMAN to treat elliptic
operators. BROWN [ 6 ], on the other hand, completed the study of
fourth-order, analytic, parabolic equations in two space variables.
Investigations concerning integral operators which generate
solutions to parabolic and pseudoparabolic equations in three and
four space dimensions have been made by RUNDELL (12], RUNDELL angd
STECHER [13], and by BHATNAGAR and GILBERT [ 3 ], Y 4 ), [ 5 ].
Pseudoparabolic equations arise in a variety of physical problems,
such as the velocity of a non-steady flow of a viscous fluid [21],
the theory of seepage of homogeneous fluids through fissured rock (1],
hydrostatic excess pressure during the consolidation of clay [19],
and the stability of liquid filled shells {18], [23), [24). GILBERT
and ROACH are presently investigating the last mentioned problem as

an application of some of the ideas presented in this current work.

I. THE FUNDAMENTAL SOLUTION

If the coefficients of gk as analytic functions of x,y

have an analytic extension to (z,z*) € pxD", p* := (z:Z € D} ,
where 2z = x + iy, z* = x - iy , then g[u] has a representation
o * K+ . d2" ez
(1.1) Mlu] := i Akj(z,z y 2y, vz, 2% := u(~ji—. :T%_ ‘
Kagme azX32*3

with B 2 l. We assume also that the operator L has a complex
form

n-1 k+3

- 3 U

(1.2) LIU) = 3 Bkj(z,z) ]

k,J)=0 3z 3z

The adjoint operator to é is given by i’ =,/“‘_‘C,

(1.3) Miu) := M (u.) - LY (U] ,
with
n X+3
(1.4) Mol i= ] enf A w
= k,J=o \ *) j
n-1 A k43
b o 7 XY 9 A .
e el :%ro e QZK«T’) (‘k1‘)
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A function S of the form
(1.6) S(x,Y,t:&,n.7) = A(X,¥,t;E€,n,7T) &n % + B(x,y,t:E,n,T)

o
where r = [(x-r')2 + (y-n)‘]"i will be called a fundamental solution

of (1.1) if it satisfies the following conditions

(c-1) As a function of (x,y,t), S 1is a solution of the adjoint
equation.ﬁ([S] = 0 and is an analytic function of its argument
except at r = 0, where An-ls has a logarithmic singularity.

(c-2) At the parameter point x = §, y = n we have

aPHay
t -0 for p+q £ 2n~3 , and an=ly o -1

axPayd
(c=3) A and B are analytic functions of (x,y,t) at r =0
and vanish at t =<1
Remark: The above implies that A may be written as
rzn_zﬁ(x,y,t;ﬁ,n,r) with R regular at the parameter point. The
above notation is computationally easy to work with.

We intend to show that it is possible to develop the coefficients

A and B as analytic functions with the expansions

= R
(1.7) A(z,z%,t58,0%,7) = § A (z,2%;5,0%) &0

4o, 3 3t

= )
(1.8) B(z2,2%,C:6,8%:¢) = Z Bj(zlz':Ll(-') is‘j‘g)—

j=1
Furthermore, we shall identify Al(z,z':ﬁ.c‘) as the Riemann
function corresponding to the operator M . The other coefficients
will be seen to satisfy homogeneous Goursat conditions on z = §
and z* = g*
Inserting (1.6) into 15.[0] := ﬂ'[Ut] - L*[U] = 0 we obtain,

after some manipulation of terms

(1.9) M(s] = M(A] ¢n % + fﬂ(nl + I 4150
~ ~
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with
n ; j
3 -
I = »l,(n-l)! ) (-1 = (A AL p (2-8) 2
R C j=o 3z%) 03
n-1 i/n n : n+j-p
+ 37 (n_ ) I s e i AL
p=1 Pl 5% az" " Pagxd M
(1.10)
et e b _aitooR
Yl \k-p R kp.on PknPt)
k=p dz Pyzal
M AT B e | C UL ST
j=o azk-pDZ'J kit kj™ | 2-0) P
and
k
1 th k 3 -n
TES = (S L (S S (AR S (% &)
H “ k=0 3zf ko't }
n=1 /n n k+n-q
+ %‘ z (n_q) Z (‘1)k+n ‘a—k'—"“n_— (Aknl\t)
q=1 k=0 9z az*" 4
L1 _
n=1 1, = ; n+j-q
ol (;'Q} [f-l)n+3 an —C (AnjAt)
j=q 3z 32‘] 1
i o e O amy] S cndgne
= Ky «J=@ kit k3 g q
k=0 3z 0zx* (z*=7%)

-

Because of the multivaluedness of the logarithmic singularity it is

necessary to set M [A] = 0 . To cancel the poles at z = § and

z* z* we ask that the coefficients of (z—r,)p i (z*-r,*)p

(p=1,...,n) vanish. These latter conditions provide us with so-
called Goursat data for the Aj' Bj coefficients in the repre-
sentations (1.9). Setting (1.7) into (1.10) and (l1.11) we obtain
the following conditions which Al(z,z*;c,c') must satisfy

n n : ktj=p -

k

(112 ) ( ) i (-1)k+J ~3E:———** LAk'(C’Z.) Al(C,Z‘:C,C‘)} =0
k=p j=o 3z Pags) J

Ww=1,2,...,0); =z =101t ,

and
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s

j n ! k+j-q
(1.13) ( ) By L

j=q \4/ k=0 3zKaz+I™9

[Akj(z,c*) Al(z,c';c,c')] =0
fq=l,:2 e n)i sz =
We recall that condition (c¢-2) implies that

9P*q
(1.14) e A (B TR TR =0 for: J=1;2,3,0+
39zP3z*3 I

(Pra=0,1,2,+.-,2n=-3 , with p+g < 2n:3) &

In order to show that Al is actually the Riemann function, it
is sufficient for us to show that the above conditions are equivalent
to the characteristic conditions which uniquely determine it. We
recall from VEKUA [22], Chapter V, the following conditions imposed
on the Riemann function R(z,z*;g,z*) and for convenience we label
these conditions using his equation numbers :

(37.28) M*[R] = 0

k k
(37.29) a—g (2,2%iC.0%) =9, % (22> T e%) =00,
az 22 14 2¥=g*
(k=0,1,2,...,n-2)
an-l
—-1 (z.2*ig.C*) = X(z*,g*,g)
3z 2=¢
(37.30)
an—l
—=1 (z.2%ig,g*) = X*(z,5,8*) .
9z* Zz¥=g*

Here X, and X* are solutions respectively of the ordinary dif-

ferential equations

n % 3k
I (-1 A (C,z%) X[ =0 and
(37.31) e i
n k
Foe=n® & I (z,5%) x%| = 0
k=0 sz kn

Furthermore, X and X* are seen to satisfy the intial conditions




_q—‘

k 1,
X X
;)'"*‘R‘ [l < B =0, ‘n'_"l (.:',T,*,')i = 1 ,
z Gk
(37.32) Febme |
(k=0,1 n-2)
3 n-1
XX N
a“h‘ (BT & )l =0, 2;\7}' (l,,, )I = 1
P -4 ( ) 2

(k=0,;1LY;:«.n=2)

We note that Ay(z,2*;z,5*%) automatically satisfies (37.28),
(37.29), (37.32) by virtue of our conditions (c<l) and (c-2). This
suggests that we check to see if the remaining conditions (37.30),
(37.31) are compatible with ours. Using (37.29) in combination with

condition (1.12) we obtain for p > 1

n n+j)-p 1
{&.25) R Rl [\nj(:'z.) A e )Jt I
= - -k
J=0 Az 3z ‘?r
In the case where p = 1, this becomes
5 [
Xt ¢ Il Pro g e s on=l =g ata
L1t ( )__3____ ? SR z,z*) -r;(:,z*;.’.,;*) 1
j=o i=o dz* 9z 9z
~n-1 z=g
s (-1t _3] L j_.__'}l (8 ek, o%) “ g
fz=¢

Identifying temporarily Ay with R and identifying the (n—l.‘St

derivative with respect to 2z as X as given in (37.30), (1.16)
becomes the first of equations (37.31). Repeating this analysis
with (1.13) and identifying X* as the (n-l)St derivative with
respect to z* , (37.30) yields likewise the second equation of
(37.31). This exhausts our conditions and leaves us free to impose
the additional.initial conditions on X and X* prescribed by

.y

(37.32). We conclude that we are permitted to identify Ay 2R

Lemma: The first coefficient Ay(z,z*;6,0*)  for A in the

representation (1.7) may be taken as the Riemann function associated
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with M[u) = 0. The coefficients Ap(z,z‘;c.c'), p2>22, are

determined recursively by the nonhomogeneous eguations

* - *
(X.17) M [AP] L (Ap_l] P
and the homogeneous Goursat data ,
3t
S A _(Z,2%;T.T%) =0, £20,1 =407
v P :
3z -
2=y
(1.18) N
.
— A (z,2*%;C,L*) =NON R e=0 LR n =
gar® P
b 2*"'(,'

Proof: Since S = A log % + B satisfies the adjoint eguation, it

follows that M [A] = 0. This in turn implies g'[All =NORESand
@‘[Aj+1] = g*[Aj] , (J=0,1,...). A moment's reflection concerning
our condition (c-1) indicates that it can be satisfied using the

above conditions (1.18), when Al is taken to be the Riemann

function for MU}l = 0

IX. DETERMINATION OF THE COEFFICIENTS A (z,2*iC,t*)
The series representations (1.9) for the coefficients A and
B of the singular solution
S(Z, 2%, tL,t% v} = A(z,2* £;C,5*,1) ¢n % = Bz 2® T, T )
suggest that we try to determine Ap and Bp successively. To
this end we develop a Green's formula based on the formal identity

- 9P ap*
(2.1) VMUl - U M*v] = oo(z,2%) + Fgxlzez®)

where M and M* are given by (1.4) and (1.7 and

) § kil p of gy
(2.2 PiZae*} w=) (=L)E = VR, ) e
J=0 p=0 azP xJ 3zk P 132‘3

k=1

and
) s L q+k 2 fimto it

Pr(z,z0) 3= § ] (-1MT 2 va ) U

k=0 g=o0 az+952 L A
I=1
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If Ms is meant as the M operator with s, s* replacing 1z, z*

’

then, setting U(s,s*) := Al(z,z*;s,s‘) and noting that Al 1s also

a solution of MSIU] = 0 , the identity (2.1) yields
ap al)‘

o (s SN+ 5% (s,s*)

(2.4) - U(s,s*) MX(V]

Lemma 2: The coefficients Ap+1(z'z'7CrC') may be formally deter-

mined by the recursive scheme

?ﬁ

Ap+l(z,z*;c,c') = ds* [ ds Al(z,z';s,s') LE N UssX:r,rk) ]
|

s

(2+5) (i 4 p=1,2

Proof: 1Integrating (2.4) yields
z* z 5 ¥4
- J ds* J ds U(s,s*) g*{v] = J P(z,s*)ds* + ( P*(s,z*)ds
- r r®

J«’.

=@ (z 2t e e

*
S

S

with

o % rz |
Qilz,; 22Xt ®) = ( P(r,s*)ds* -J R&is, rr)ds
re

9 g |

Using the conditions (37.29) and recalling U := Ay, we can |

simplify the integral of P above as

z5 n z* n=1+7
(2.6) [ Pplz,stras* = 3 [ Viz,s¥) A, (z,s%) 2 ——U(2:37) gou
J j=o | 2 3z astd
(4 g

>

According to VEKUA [22] we may identify the function
(37 20 T (S*rz

which, furthermore, satisfies an ordinary differential eguation

an ncl Ul
£37.9) 49,7 A (o) S22

- n o nm 1, M

ds m=0 dt

Using (37.9), the right-hand side of (2.6) is seen to vanish

identically.
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We next turn our attention to the P*-integral, and note that

. : a"9-1y
(37.29) implies that ;——.—ﬁ—_—l(s,z*) = 0 , except for q = 0,
z
Hence
z n z k
Pt(s * = z - k a_..— *
sz%)ds = L (-1) % [Vesizh) A sien)
k=0 9s kn
(4
62.7)
"1 ys,z%) a
S MR oG
az*" .
The associated functions
an-l
(37.10) gtils;z,.z*) := ——T Al(z,z*;s,s*)
ds*
sﬁ:zt

are known [24]) to satisfy the ordinary differential equation

Qg * n=1 Mg *
(37.9) S+ ] A (s,z%) Sl-o0 ,
ds m=0 ds
and the initial conditions
atge
3= (siz,z*) =0, (2=0,1,...,n-2)
9s n :
(37.11) i
3n—l i
=7 (s} z z.5) =21
as"
S=2Z

Consequently, after some regrouping, it may be seen that

j = n.

z noz . k-1 gtk ak-l-l
= pA— - * *
[ P*(s,z*)ds = kzl{ s QZO( 1) ;;E:T:I [V(s,z ) Akn(s'z )]
g S e
: 3 9‘(5;2,2') e
(2.8) i
= (=1)20L yiz,a%) A__(2,2%) i *(z32,2%)+ Q*(giz,2%)
' nn ’ azn_l g P grér
= = Viz,z*) + Q*(C72:.2%) 4
where
n k=1 k-1-%
Q*(Liz,z*) o= - L L 1M Sy [vizn A (eien
k=1 =0 ds &
(2:9) 1)
gugrt e A )
3&1
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Putting together the above terms we note that the following repre-

sentation for V(z,z*) has been obtained

Vilz,z8) = of(r sz zd) =0z, 2K 5, TK)
(2.10) — A
+ J ds* J ds Al(z,z';s,s*) M* (V(s,s*)] .
e 4
Setting V(z,2*) := Ap+l(z,z‘;c,c') and recalling the initial con-
ditions (1.18), we conclude OQ*(z;z,z*) = 0 . The expression for

Q(z,z*;z,z*) may also be seen to vanish identically by virtue of

the identities

z* - n k-1 g 12" 52 1
J P(Z,s*)ds* = ) § (-1) [ ds* ; fk)*l(q,s*;c. *) K _.(£,s5%) |
t* if? o g* 8" | -
JRti--1
. ~S—_ U([,s*) =0
az}‘._l’las*- '
and
" n j=1 z gtk
[T pesigmas = § 0T T A st
J k=0 g=o az*qﬁsk pl
L §=1
aj—«]’~].
* e * R
« Aps 8/ )) S BT U(s,z*)ds = 0

Our Lemma is proved at this point by recognizing that

M (AL,) = LT

Lemym J: THe cogfficients SRl Reatae o) Ay B gompuled

recursively by
. Ak 2
6211} Ap+l(z,z*;c,c*} = C?s' [Vds Ap(z,z*;s,s‘) L‘lAl(s,s‘;ﬁ,i‘)] ’
p=1,2,... . Furthermore, the series representation for
: + : . 2
Alz,z*;t;g,t*,7) converges uniformly in the domain (G x G* xT)
where G is the domain of regularity of the coefficients in the
x-y coordinates and T 1is a disk in the complex t-plane.

Proof: Recalling the form of L and L* , we note that we may

write




61

A (z,2%;s,s*) l:'lAp(s,S': 8% = Ag(s,s*ig,c*) LA, (z,2%is,5%)]

- k+j~-2-1
= ¥ A - s gh . * I * . e e =
= ; s I -1)"—= [Ap(s,s ieL*) Byy(s,s )Jﬁask'ﬁl—asd A (z,z*;s,s*)

=L m g™tk

————v A _(s,s™Fr et )B, . (5, 85%)
k=0 3s* |[m=o0 as'mask[ p k3

j=1

aj—m—l
as*]_mfl‘ql(zaz';s,s')

Integration gives the following identity

z* z
J ds* [ ds A (z,2*;s,s*) L‘[Ap(s,s*iglg*)]

o R z
= I ds* [ ds Ap(s,s':c.c*) L[Al(z,z":s,S")l
L (£
+ H ’
where
nil kil 1} X aﬂ, k+j-2-1
H == (-1) ds* AMUS s N7 CACXINBI(SSM N =
j=o #=0 [ asl[_p % } ask g 135*3
k=1 * =
(2-LE2)
o AlZz,zY;s,8*)
and -
n-1 K 3=1 o z am+k
* .= ) - s L A yS*¥iC,C* . ,S*
H kfo( 1) mzo( 1) [ ds as«mask [ p(s SXsnex) Bkj(s s )]
j=1 o
(2-13) el s*=z*
..a__...___ * . *
S Ay(z,2%;s,s%) 3

S.:L.

Using the conditions (1.18) for and! (37.29) for A the

Ap+1 It
terms H and H* are seen to identically vanish. This establishes
the recursive definition (2.11). To show that the series for A
converges we note that according to VEKUA [22], p. 186 Al(z,z';L,g‘)
is dominated by

TR ) Lo (O n=1 -

|l el ol in (G x G‘]z

[(n-1)1)°
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Consequently, using (2.11) it follows by induction that

. N g v n+p-2 P

(2.14)  |A (z,2%5,c%) < C faegl et L ) Lia )| P
[n¥p=2) 1]
where
Nl == sup  [LiA]]
k (G x G*)2 ;
and
Cl= sup |Al|

(G x G*) 2

From (2.14) it is clear that the series for A converges in the

stated domain.

III. DETERMINATION OF B(z,z*,t;0,0*,T)
From (1.10) we obtain as the partial differential equation for B,
= - - *
(3.1) e B S 6L B
where In and In‘ are given by (1.11) and (1.12) respectively.
Putting the series expansion (1.8) for B into the left-hand side

of (3.1) yields then a recursive scheme for the coefficients “j 2

namely
e ! n k
(3.2) M*(By] = f (z,2%¢,C*%) := -% ! —~Al"Jle)J ! ( )
p=1 (z-c)F k=p \P
n k+j-p
) J
<) 0 S A
j=o gz Pyged J
n EECIrES n 3 n Sl (k*j-q ]
3} cnten [§ ) 8 e e
“ q=1 (2*-g*)9 j=q \9/ k=0 3z az*d 1 ]
n o )
e e ot L
(3.3) MA(B 1 =£, (2,2%50,0%) = L*[B ]~ 3 (=)= j)o( 2 »;...ﬁ(AnjAUI)
n-1 p n kK n . k+j-p
BN G TLAT S I ( ) T ekt 2 s
" p=1  (z-¢)P k=p ‘P! =0 de Bggl) R REL
=k 7%y n=l ak+3j=p
LRl \/ I -0k S s A 4
k=p \P/ j=0 ) iu x) J
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n k
1 {n-1)! 2 k 23
- — (=L)™ — (A A )
2 (z'—;*}n k=o sz kn"g+1
n-1 q n 5\ n . .k+j-q
= l z i:ll_lﬂllli z J E (_1)k+3 _3_ (A, .A )
20 x_p#19 e AlCyln K. .J-q kiTe+l
g=1 (z*-trr) j=q k=0 9z 9z*
n=1 j n-1 K+3 Bk+j-q
= (-1) ST (Bk'Al) ’
j=q 19/ k=o 3z az*3 74 J
2=1,2,...

~
If we specify that the By satisfy the homogeneous Goursat data

akﬂl(z,z’:c,c*)

aztk Zh=g % i !
f2:2 akBE(Z.Z*;C,L*) k=012, .00 pn—1
then

*
Bg+1(z,z';c,c*) = Jz ds* szs fo(s.s*;p,0*) Ay (z,2*%;s,8*)
=0, Qe = ot g
The majoration for the Bl+l , while technically involved, proceeds
by the usual methods ([10], (11), (8 ].
We summarize the discussion of Sections II and III in the fol-

lowing theorem.
Theorem 1l: Assume that the coefficients Ajk' Bjk are analytic
functions of two complex variables 1z, z* in the bicylinder D xD*.

Then A(z,2%*,t;{,¢*,t) and B(z,z%*,t;l,f*,T) are analytic functions

of their six independent variables for all (complex) t, 1, and
2,0 € D, 2*,L.* € D* . Moreover, both A and B can be repre-

sented by a uniformly convergent series expansion in the form of

(1.7) and (1.8} respectively.

Lo
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IV. BOUNDARY VALUE PROBLEMS
We now proceed to use the fundamental solution (1.8) to develop re-
presentations for boundary value problems. The solutions to boundary
value problems we will seek in the class
(4.1) Y := {u(x,y,t) : u ¢ ™ i Exm); u, € M pxmn e B xT)},

where T := {t 2 0 < £ < to) and where t, is a fixed constant.

~

We begin by considering the identity

v, Lul - u, Miv] = {v, Mu,] - u
t ~ t~ € - L t
(4.2) :

- {v y[ut] v L*([v]} + e {v Lla)}

U‘{vt}}

If we replace v by the fundamental solution
S(x,y,t;E,n,1) = A log % + B

then (4.2) leads to an integral representation for solutions which

satisfy the homogeneous initial data w(x,y,0) = 0 in D, namely

%
(4.3) ulE n,t) = PRGEER SEET { dt J HEw (e, v €)Yy S0, yatse s, 1))
) 3

2n( (n-1)1)2 o

3k+]ut 3k+JSt

Here H 1is a bilinear form in ] i y (kth & 2n~1]) as
IX 0y~ ax Dy]

: ak+j ak+jS
well as ——Tfii ¥y (k+3 € 2n-3). The introduction of a
Ix Byj Ix By)

special, Green-type, fundamental solution, namely one which satis-

fies on 3D

as, a“'lst |
; (4.4) St EE e et 0 (v = inward normal) ;
v
permits us to reduce the bilinear form H { , | to the case where ;
only the boundary data of the first kind |
+ n~1 +
% :)ut 3 W 1
(4.5) ut = fo ’ BT' = fl p mea g avn_r = fn on 3D |

appears.

This representation is more easily computed using the complex

notation. To this end we recall the elementary identities,
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+ +
a _3;29_ B e 0 I L
ds . m az§+1az,m ds 32K 324 M1 dg

+ +
aul .ok Bk k) 3% az\k-2¢
3 s TR 0 e = e '
dv =0 ; \dz dz*

which hold on 93D. The first two brackets of (4.2) we compute

(4.6)

directly as

(Ve Ml ) - U, M*[Vt]) - {v LU} = U, L*[V]))
(4.7)
L s
"5 Y apw s
where :
e % kil . 31 3k+j-—l-1 -
P := (-1)" “— (VA ) — c
k=1 £=o0 Bzg L 3 o=t lé)z"J
j=o
(4.8) ;
nil kil . 81 3k+3_£_1Ut
- (-1)* £— (vB, .) — T RE
k=1 %<0 PR R e T
j=o
-m-1
n J=l m+k gy
k m 3 t
P := § (-1)" ] (1) (V. A ——
k=0 m=0 az'mazk &Ky az™
J=1
(4.9)
. - 1
1 By J=1 mt+k al™™ Ny
- TR e A B, ) —— -t
k=0 m=0 dz® 8z J dz
j=1
Then (4.3) takes on the form
T
(4.10) Uiz, z%:t) = f dt j NO(U,S)ds .
where ° aD
e he 92 L Se dZ
(4.11) No(u,v) := 1(P ds P* dé) &

This in turn may be expressed in terms of tangential and normal

derivatives of the data using (4.6). When S 1is a Green's function,

then (4.10) is directly evaluated in terms of (4.5).

T ————
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